Es sei \( V \) ein Vektorraum über \( K \) mit \( \operatorname{dim} V=n \). Weiter seien \( W_{1}, \ldots, W_{m} \) Unterräume von \( V \) mit \( \operatorname{dim} W_{i}=n-1 \) für \( 1 \leq i \leq m \) und \( \operatorname{dim}\left(W_{1} \cap \ldots \cap W_{m}\right)=n-k \) gegeben.
Zeige, dass es \( k \) Indizes \( 1 \leq i_{1}, \ldots, i_{k} \leq m \) mit \( W_{i_{1}} \cap \ldots \cap W_{i_{k}}=W_{1} \cap \ldots \cap W_{m} \) gibt. (4 Punkte)