"über das normale Ableiten zum Grenzwert der Steigung zu kommen ist in diesem Beispiel nicht möglich. ... Über beide Verfahren komme ich doch auf die Steigungsfunktion einer Funktion.. "
Nein, mit diesem Verfahren kommst du im Allgemeinen nicht zur Steigungs-/Ableitungsfunktion.
Die Ableitung in \(x_0\) ist definiert als \(f'(x_0):=\lim\limits_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}\).
Das, was du berechnen willst, nämlich den Grenzwert der Steigung, ist \(\lim\limits_{x\to x_0}f'(x)=\lim\limits_{x\to x_0}\left(\lim\limits_{h\to 0} \frac{f(x+h)-f(x)}{h}\right)\).
Und diese beiden Grenzwerte sind erstmal zwei verschiedene Sachen, die übereinstimmen können, aber nicht müssen (wie du hier gesehen hast, kann es auch passieren, dass der eine Grenzwert existiert, während der andere nicht existiert).