Aufgabe Funktionenscharen:
Gegeben ist die Funktionenschar \( f_{t} \) mit \( f_{t}(x)=\frac{1}{t} e^{-tx^2} \) mit \( t>0 \).
14.1 Bestimmen Sie in Abhängigkeit von \( t>0 \) die Extrema sowie die Gleichung der Wendetangenten. Skizzieren Sie für \( t=\frac{1}{4} \) die Graphen zu \( f_{t} \) und \( f_{t}^{\prime} \) in ein gemeinsames Koordinatensystem.
14.2 Bestimmen Sie für \( t>0 \) den Schnittpunkt \( S_{t} \) der Graphen zu \( f_{t} \) und \( f'_{t} \). Ermitteln Sie die Gleichung der Ortskurve aller Schnittpunkte \( \mathrm{S}_{\mathrm{t}} \) mit \( \mathrm{t} \in \mathbb{R}_{+}^{*} \). Zeigen Sie, dass es einen Wert für \( \mathrm{t} \) gibt, sodass \( \mathrm{S}_{\mathrm{t}} \) mit einem Wendepunkt des Graphen \( \mathrm{f}_{\mathrm{t}} \) zusammenfällt.
14.3 Zeigen Sie, dass je 2 Graphen der Schar \( \mathrm{f}_{\mathrm{t}} \) keinen gemeinsamen Punkt haben.
Ansatz/Problem:
Ich möchte die Wendetangente bestimmen, jedoch fallen in meiner Rechnung die Extremstelle und die Wendestelle zusammen (bei x = 0), was ja nicht sein kann.
Außerdem habe ich Probleme zu zeigen, dass die Graphen der Schar keinen gemeinsamen Punkt haben. Mein Lehrer meint ich soll je zwei verschiedene Variablen für t einsetzen und dann die beiden Gleichungen gleichsetzen, aber ich komm da nicht weiter.