Mit A bezeichnen wir den linken unteren Eckpunkt des zweiten Quadrats von links, mit B den linken unteren Eckpunkt des ganz rechten Quadrats. Aufgrund des Stufenwinkelsatzes folgt, dass die Dreiecke OAY und OBP in allen drei Innenwinkeln paarweise übereinstimmen, also ähnlich sind. Aus dieser Ähnlichkeit folgt (Mit AY sei dabei nicht die Gerade AY, sondern die Verbindungsstrecke zwischen A und Y gemeint, da ich nicht weiß, wie man das in den Formeleditor eingibt)
AY=1/2014*BP=1/2014*1=1/2014
Analog erkennt man
AX=1/2015
Sodass abschließend folgt
F(OXY)=F(OAY)-F(OAX)=1/2*1*1/2014-1/2*1*1/2015=1/(2*2014*2015),
was dem Leser überlassen sei auszurechnen.