a)
Ariane: X = [0, 2] + r·([4, 3] - [0, 2]) = [0, 2] + r·[4, 1]
Berta: X = [3, 0] + r·([6, 2] - [3, 0]) = [3, 0] + r·[3, 2]
|[4, 1]| = √(4^2 + 1^2) = √17 = 4.123 sm/h
|[3, 2]| = √(3^2 + 2^2) = √13 = 3.606 sm/h
[0, 2] + 2·[4, 1] = [8, 4]
[0, 2] + 2.5·[4, 1] = [10, 4.5]
[0, 2] + 3·[4, 1] = [12, 5]
[0, 2] + 4·[4, 1] = [16, 6]
[3, 0] + 2·[3, 2] = [9, 4]
[3, 0] + 2.5·[3, 2] = [10.5, 5]
[3, 0] + 3·[3, 2] = [12, 6]
[3, 0] + 4·[3, 2] = [15, 8]
b)
[0, 2] + r·[4, 1] = [3, 0] + s·[3, 2]
4·r - 3·s = 3
r - 2·s = -2
Wir lösen das LGS und erhalten die Lösung: r = 2.4 ∧ s = 2.2
S = [0, 2] + 2.4·[4, 1] = [9.6, 4.4]
S = [3, 0] + 2.2·[3, 2] = [9.6, 4.4]
c)
Ariane passiert den Schnittpunkt um 13:00 + 2.4 h = 15:24.
Berta passiert den Schnittpunkt um 13:00 + 2.2 h = 15:12.