0 Daumen
2,8k Aufrufe

Ich komme leider nicht mehr bei den Aufgaben weiter und brauche ganz Hilfe!

Wie groß ist der Anstieg der Funktion f(x)=3xhoch2+4x-8 an der Stelle 3/7?

Und

An welcher Stelle hat die Funktion einen f(x)=2/3hoch3-5xhoch2+9x-10 einen Anstieg von 9?


Wäre sehr dankbar für den Rechenweg, damit ich es nanachvollziehen kann. Danke :)!

Avatar von

2 Antworten

0 Daumen

f(x) = 3·x^2 + 4·x - 8

f'(x) = 6·x + 4

f'(3/7) = 6·(3/7) + 4 = 46/7 = 6.571


f(x) = 2/3·x^3 - 5·x^2 + 9·x - 10

f'(x) = 2·x^2 - 10·x + 9 = 9

x = 5 ∨ x = 0

Avatar von 489 k 🚀
0 Daumen

Also die Funktion heißt: f(x)= 3x2 +4x+8. Wenn du die Steigung an einer bestimmten Stelle der Funktion wissen willst, musst du zuerst die Ableitung bestimmen. Diese lautet:

f'(x) = 6x+4

Die Steigung an einer bestimmten Stelle de Funktion f(x) ergibt sich nun als Funktionswert der Ableitungsfunktion f'(x) an der selben Stelle. Also:

f'(3/7) = 6*3/7 +4 = 6,57

Im zweiten Fall geht es anders herum. Du bildest wieder zuerst die Ableitung. Kennst aber die Steigung schon und willst die Stellen wissen. Hierfür setzt du die Steigung für f'(x) ein und löst nach der Stelle x auf:

Leider ist mir die Funktion f(x) in der Aufgabe nicht ganz klar, weil du keine Klammern gesetzt hast...

Avatar von 26 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community