$$ \left( \sqrt{n+\sqrt{n}} - \sqrt{n} \right) \cdot \frac{\sqrt{n+\sqrt{n}} + \sqrt{n}}{\sqrt{n+\sqrt{n}} + \sqrt{n}} = \frac{ n+\sqrt{n} -n }{\sqrt{n+\sqrt{n}} + \sqrt{n}} = \frac{\sqrt{n}}{\sqrt{n+\sqrt{n}} + \sqrt{n}} = \frac{1}{ \sqrt{1+\frac{\sqrt{n}}{n}} + 1 } = \frac{1}{\sqrt{1+\sqrt{\frac{1}{n}}} + 1} $$
Im vorletzten Schritt habe ich mit \( \frac{1}{\sqrt{n}} \) erweitert.