a)
f(x) = x^2 - x
f'(x) = 2·x - 1
a = -2
f(a) = f(-2) = 6
f'(a) = f'(-2) = -5
t(x) = f'(a)·(x - a) + f(a) = -5·(x - (-2)) + 6 = - 5·x - 4
n(x) = -1/f'(a)·(x - a) + f(a) = -1/(-5)·(x - (-2)) + 6 = 0.2·x + 6.4
b)
f(x) = 4/(x + 4)
f'(x) = - 4/(x + 4)^2
a = 4
f(a) = f(4) = 4/(4 + 4) = 4/8 = 1/2
f'(a) = f'(4) = - 4/(4 + 4)^2 = -4/64 = -1/16
t(x) = f'(a)·(x - a) + f(a) = -1/16·(x - 4) + 1/2 = 0.75 - 0.0625·x
n(x) = -1/f'(a)·(x - a) + f(a) = -1/(-1/16)·(x - 4) + 1/2 = 16·x - 63.5
c)
Probier jetzt mal c alleine und stelle die Lösung zur Kontrolle hier rein.