the function describes a linear transformation. The corresponding transformation matrix regarding the canoncial basis of \(\mathbb{R}^3\) is:
$$ A_{f_2} = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} $$
Regarding this matrix you can easily deduce that the image of \(f_2\) is \(\mathbb{R}^2\) and that the kernel is the subset \( \left \{ t \cdot \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} | t \in \mathbb{R} \right \} \subset \mathbb{R^3} \).
Regards