Hallöchen, ich bin es mal wieder ^^'
Wir haben derzeit Folgen, Reihen, etc. und natürlich sollen wir auch weiterhin Beweise führen, wie sollte es auch anders sein?
Allerdings tue ich mich bei Beweisen immer noch ein wenig schwer, und wollte mal nach einen Ausführlichen Rechenweg fragen, zu Folgender Lösung, weil auch wenn ich weiß was rauskommt, kann ich den Beweis irgendwie nicht ganz veranschaulichen :/
Aufgabe:
1.)Eine Folge (an) mit an > n (für alle n ∈ ℕ) kann keinen Grenzwert haben.
2.) Eine Folge (an) mit an+1 > an (für alle n ∈ ℕ) kann keinen Grenzwert haben.
3.)Wenn eine Folge, die nur negative Folgenglieder hat, konvergiert, so ist ihr Grenzwert negativ.
4.) Eine Folge, in der die Zahl 0,1 unendlich oft als Folgenglied auftritt, kann keine Nullfolge sein.
Bin um jede Hilfe Dankbar ^^
Lg Niyori