a) erst mal x = ln(z) also z = e^x und dz/dx = e^x also dz = e^x * dx
Gibt Integral sin(x) * e^x dx
Dann partielle Integration
Integral sin(x) * e^x dx = sin(x) * e^x - Integral cos(x) * e^x dx #
und Integral cos(x) * e^x dx wieder mit part. Int.
Integral cos(x) * e^x dx = cos(x) * e^x - Integral - sin(x) * e^x dx
= cos(x) * e^x + Integral sin(x) * e^x dx
Bei # einsetzen
Integral sin(x) * e^x dx = sin(x) * e^x - ( cos(x) * e^x + Integral sin(x) * e^x dx )
Integral sin(x) * e^x dx = sin(x) * e^x - cos(x) * e^x - Integral sin(x) * e^x dx )
2*Integral sin(x) * e^x dx = sin(x) * e^x - cos(x) * e^x
also Integral sin(x) * e^x dx = (sin(x) * e^x - cos(x) * e^x) / 2
Substitution zurück gibt
Integral sin(ln(z)) dz = (sin(ln(z)) * z - cos(ln(z)) * z) / 2 + C