a) erst mal x = ln(z) also z = ex und dz/dx = ex also dz = ex * dx
Gibt Integral sin(x) * ex dx
Dann partielle Integration
Integral sin(x) * ex dx = sin(x) * ex - Integral cos(x) * ex dx #
und Integral cos(x) * ex dx wieder mit part. Int.
Integral cos(x) * ex dx = cos(x) * ex - Integral - sin(x) * ex dx
= cos(x) * ex + Integral sin(x) * ex dx
Bei # einsetzen
Integral sin(x) * ex dx = sin(x) * ex - ( cos(x) * ex + Integral sin(x) * ex dx )
Integral sin(x) * ex dx = sin(x) * ex - cos(x) * ex - Integral sin(x) * ex dx )
2*Integral sin(x) * ex dx = sin(x) * ex - cos(x) * ex
also Integral sin(x) * ex dx = (sin(x) * ex - cos(x) * ex) / 2
Substitution zurück gibt
Integral sin(ln(z)) dz = (sin(ln(z)) * z - cos(ln(z)) * z) / 2 + C