= eα·x·SIN(ω·x) · (eα·x·(α·COS(ω·x) - ω·SIN(ω·x))) - eα·x·(ω·COS(ω·x) + α·SIN(ω·x)) · (eα·x·COS(ω·x))
Schön ausklammern von e^{2·α·x}
= e^{2·α·x} * (α·SIN(ω·x)COS(ω·x) - ω·SIN(ω·x)SIN(ω·x) - ω·COS(ω·x)COS(ω·x) - α·SIN(ω·x)COS(ω·x))
= e^{2·α·x} * (- ω·SIN(ω·x)SIN(ω·x) - ω·COS(ω·x)COS(ω·x))
= - ω·e^{2·α·x} * (SIN(ω·x)SIN(ω·x) + COS(ω·x)COS(ω·x))
Benutze: SIN^2(x) + COS^2(x) = 1
= - ω·e^{2·α·x}