H1(-1/0) H2(1/0).
Außerdem einen Tiefpunkt bei: T(0/-1).
Desweiteren ist die Funktion Symmetrisch zur y-Achse ->F(x)=ax4+cx2+e
T(0/-1).
f ( 0 ) = a*0^4 + c * 0^2 + e = -1 => e = -1
f ( x ) = a * x^4 + c * x^2 - 1
f ´( x ) = 4 * a * x^3 + 2 * c * x
f ( 1 ) = a * 1^4 + c * 1^2 -1 = 0
f ´( 1 ) = 4 * a * 1^3 + 2 * c * 1 = 0
a + c -1 = 0
4 * a + 2 * c = 0
a = 1 - c
4 * ( 1 -c ) + 2 * c = 0
4 - 4 * c + 2 * c = 0
c = 2
a = -1
f ( x ) = - x^4 + 2 * x^2 -1
Probe durch die Skizze
~plot~ - x^4 + 2 * x^2 -1 ~plot~