Ein sachdienlicher Hinweis von mir:
f(x) = ax^3 + bx^2 + cx + d
f'(x) = 3ax^2 + 2bx + c
f''(x) = 6ax + 2b
f'''(x) = 6a
f(0) = 0, also d = 0 | Punktsymmetrie zum Ursprung
f(2) = 10, also
f(2) = 8a + 4b + 2c = 10
und wegen Punktsymmetrie auch
f(-2) = -8a +4b -2c = -10
f'(-1) = 3a -2b + c = 6
a = -1
b = 0
c = 9
d = 0
f(x) = -x^3 + 9x
f'(x) = -3x^2 + 9
f''(x) = -6x