$$ f(x) = x^2 + 4x $$
$$ f'(x) = \lim_{h\to\\0} \frac { f(x+h) - f(x) }{ h }$$
$$ = \lim_{h\to\\0} \frac { (x+h)^2 + 4\cdot (x+h) - (x^2+4x) }{ h } $$
$$ = \lim_{h\to\\0} \frac { (x+h)^2 + 4\cdot (x+h) - x^2-4x }{ h } $$
$$ = \lim_{h\to\\0} \frac { x^2+2hx+h^2 + 4x+4h - x^2-4x }{ h } $$
$$ = \lim_{h\to\\0} \frac { 2hx+h^2 +4h }{ h } $$
$$ = \lim_{h\to\\0} \frac { h(2x+h+4) }{ h } $$
$$ = \lim_{h\to\\0} 2x+h+4 $$
$$ = 2x + 4 $$