0 Daumen
330 Aufrufe

vllt kann mir jemand helfen.Ich weiß nicht wie ich anfangen soll oder es beweisen soll
Bild Mathematik
Avatar von

2 Antworten

0 Daumen
 
Beste Antwort
(b)  Sei \(\varepsilon>0\) vorgegeben. Wähle \(N\in\mathbb N\) so groß, dass \(N>\frac6\varepsilon+1\) ist.
Dann gilt für alle \(n\in\mathbb N\) mit \(n>N\):$$\vert b_n-0\vert=\left\vert\frac{\sin(n)+5}{\cos(n)+n}\right\vert\le\frac6{n-1}<\frac6{N-1}<\varepsilon.$$
Avatar von
0 Daumen
Hi, bei a) kannst du im Zähler und im Nenner n ausklammern, kürzen und dann die Grenzwertsätze benutzen, falls die bereits zum entwickelten Instrumentarium gehören. Letzteres kann der unbeteiligte Leser natürlich nicht wissen...

PS: Ich sehe gerade, dass er das sehr wohl kann, wenn er bis zum Ende liest. Dort steht, wie vorgegangen werden soll.

PPS: Fange also so an:

Sei \(\varepsilon>0\) fest aber beliebig. Dann existiert ein \(n_0 \in \mathbb{N} \), für das gilt: (...)
Avatar von

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
0 Antworten
0 Daumen
1 Antwort
0 Daumen
1 Antwort
0 Daumen
1 Antwort
Gefragt 29 Nov 2015 von Gast
0 Daumen
3 Antworten

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community