Aus der Mittelstufe erinnern wir uns, wie man die Steigung einer Geraden bestimmt. Man zeichnet ein Steigungsdreieck und teilt dessen senkrechte Kathetelänge durch die Länge der waagerechten Kathete. Jetzt haben wir es nicht mehr nur mit Geraden zu tun, sundern mit gekrümmten Graphen. Dennoch wollen wir den Begriff der Steigung hier auch verwenden. Wir unterscheiden hier aber zwischen Steigung in einem Punkt und Steigung von Punkt zu Punkt. Die Steigung in einem Punkt heißt auch Tangentensteigung und die Steigung von Punkt zu Punkt.heißt auch Sekantensteigung. Der Differenzenquotient dient dazu, die Steigung von Punkt (a/b) zu Punkt (x/y) zu berechnen. Dazu brauchen wir wieder das Steigungsdreieck aus der Mittelstufe. Die senkrechte Kathetelänge durch die Länge der waagerechten Kathete ist hier (y-b)/(x-a). Geschickter wäre es aber, die Punkte (x/y) und (x+h/y(h)) zu nennen. Die senkrechte Kathetelänge durch die Länge der waagerechten Kathete ist hier dann (y(h) - y)/h. Wenn man jetzt h immer kleiner macht, wird auch das Steigungsdreieck immer kleiner und die Steigung von Punkt zu Punkt wird immer näher an die Steigung im Punkt (x/y) heranrücken. Man sagt: Der Grenzwert der Sekantensteigungen, wenn der Abstand der Punkte gegen Null geht, ist die Tangentensteigung.