Allgemein, wenn lim(x,y)→(x0,y0) f(x,y) = L gilt, dann gilt auch limx→x0 (limy→y0 f(x,y)) = limy→y0 (limx→x0 f(x,y)) = L.
Konkret bei deiner Funktion ist limx→0 (limy→0 f(x,y)) ≠ limy→0 (limx→0 f(x,y)), also hat f bei (0,0) keinen Grenzwert.
Weil f bei (0,0) keinen Grenzwert hat, kann f bei (0,0) nicht stetig sein.
Es gibt Fälle, in denen limx→x0 (limy→y0 f(x,y)) = limy→y0 (limx→x0 f(x,y)) = L ist, aber lim(x,y)→(x0,y0) f(x,y) nicht existiert.