0 Daumen
1,2k Aufrufe

Wie kann die Fortsetzung der folgenden Zahlenreihe um weitere 3 Zahlen berechnet bzw. bestimmt werden:

5564, 4171, 4831, 5041, 5533

Avatar von

1 Antwort

0 Daumen

Eigentlich kann man unendlich viele Bildungsgesetze mit 5 Zahlen bilden. Wenn ich eine Funktion 4. Grades wähle:

f(x) = 3235/24·x^4 - 14711/12·x^3 + 90257/24·x^2 - 48751/12·x + 5564

Dann erfüllt diese die Bedingungen

f(0) = 5564

f(1) = 4171

f(2) = 4831

f(3) = 5041

f(4) = 5533

Damit könnte ich jetzt auch leicht drei weitere Zahlen zu ermitteln.

Die Frage ist ob dieses Bildungsgesetz hier gefragt ist oder vielleicht ein anderes.

Avatar von 489 k 🚀

\(f\) ist vom Grad vier.

Danke für die Verbesserung.

Sollten die beiden nächsten Zahlen f(5) 3446 und f(6) 5419 nach Ihrer Berechnung lauten, bitte ich Sie, diese Zahlenreihe mit nun 7 Zahlen um weitere drei Zahlen fortzusetzten.

Danke für Ihre Mühe und Ihre Zeit,

Meine Wertetabelle sieht so aus

[0, 5564;
1, 4171;
2, 4831;
3, 5041;
4, 5533;
5, 10274;
6, 26466;
7, 64546;
8, 138186;
9, 264293;
10, 463009]

Ich weiss nicht wie du auf deine Werte kommst.

Die Zahlenreihe besteht aus einer Abfolge von bestimmten Ereignissen auf einer Zeitachse.

Ich versuche durch diese Zahlenreihe und deren Fortsetzung eine mögliche Vorausschau oder Eingrenzung des nächsten Ereignisses zu erhalten.

Die aktuelle Zahlenreihe lautet:

5564, 4171, 4831, 5041, 5533, 3446 und 5419.


Vielen Dank für Ihre Mühe und Hilfe.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
1 Antwort
0 Daumen
3 Antworten
0 Daumen
1 Antwort

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community