DET([2, 2; -1, 5] - k·[1, 0; 0, 1]) = k^2 - 7·k + 12 = 0
Eigenwerte sind also: k = 4 ∨ k = 3
Eigenvektor zum Eigenwert 4
[2, 2; -1, 5] - 4·[1, 0; 0, 1] = [-2, 2; -1, 1]
-2a + 2b = 0
a = b
Eigenvektor [b; b] = b * [1; 1]
Eigenvektor zum Eigenwert 3
[2, 2; -1, 5] - 3·[1, 0; 0, 1] = [-1, 2; -1, 2]
-1a + 2b = 0
a = 2b
Eigenvektor [2b; b] = b * [2; 1]
Winkel zwischen den Vektoren
arccos([1,1] * [2, 1] / (|[1,1]| * |[2, 1]|)) = 18.43°