f '(x)= lim (h--->0) ((x_0 +h)^2 -3(x_0+h)^3 -(x_0^2 -3 x_0^3))/h
f '(x)= lim (h--->0) ((x_0^2 +2 x_0 *h +h^2 -3(x_0^3 +3 h^2*x_0 +3 h *x_0^2 +h^3) -(x_0^2 -3 x_0^3))/h
f '(x)= lim (h--->0) ((x_0^2 +2 x_0 *h +h^2 -3x_0^3 -9 h^2*x_0 -9 h *x_0^2 -3 h^3-x_0^2+3 x_0^3))/h
f '(x)= lim (h--->0) ((2 x_0 *h -2 h^2 -9 h^2 *x_0-9h x_0^2)/h
f '(x)= lim (h--->0) ((2 x_0 -2 h -9 h *x_0-9 x_0^2)
f '(x)= lim (h--->0) ((2 x_0 -9 x_0^2) =2*1 -9 *1^2) = -7