Ich frage mich, ob es einen Sinn ergibt, von "nicht unterscheidbaren Würfeln" zu sprechen. Außerdem frage ich mich, ob der Ergebnisraum hier richtig, bzw. sinnvoll gewählt ist.
Es gibt zwar nur 11 verschiedene Augensummen bei zwei Würfeln, aber man kann dies dann nicht zum Berechnen der Wahrscheinlichkeiten nutzen. Ebensowenig wie die erste obere Auflistung der Ergebnisse.
Die Wahrscheinlichkeit z.B. für die Augensumme 6 ergibt sich nur, wenn man alle 36 möglichen Augenzahl-Paare {11, 12, 13, 14, 15, 16, 21, 22, 23, ...} betrachtet, als wenn die Würfel unterscheidbar wären: Neben 12 muss also auch 21 auftauchen, usw.
Günstig für das Ereignis "Augensumme 6" sind dann folgende Paare: {15, 24, 33, 42, 51} also 5 günstige Ergebnisse von 36 möglichen Ergebnissen:
Wahrscheinlichkeit für Augensumme 6 = 5/36 also ungefähr 0,139 = 13,9%
Wann macht es überhaupt Sinn, von "nicht unterscheidbaren Würfeln" zu sprechen?