Benutze die abc-Lösungsformel
a·x^2 + b·x + c = 0 --> x = (-b ± √(b^2 - 4·a·c))/(2·a)
3·x^2 - 2·a·x - a^2 = 0 --> x = - a/3 ∨ x = a
x^2 - a·x + a - 1 = 0 --> x = a - 1 ∨ x = 1
2·x^2 + (a - 11)·x - 5·(a - 1) = 0 --> x = (1 - a)/2 ∨ x = 5
3·x^2 - (4·a - 3)·x + a·(a - 1) = 0 --> x = (4·a - 3)/6 - ABS(2·a - 3)/6 ∨ x = ABS(2·a - 3)/6 + (4·a - 3)/6
a·x^2 - (a^2 + 1)·x + a = 0 --> x = (a^2 + 1)/(2·a) - ABS(a^2 - 1)/(2·a) ∨ x = ABS(a^2 - 1)/(2·a) + (a^2 + 1)/(2·a)
Die Beträge bekomme ich hier nur weil es allgemeine Lösungen sind.