0 Daumen
1,9k Aufrufe

$$Sei der\quad ℝ-Vektorraum\quad { P }_{ 2 }(ℝ)\quad der\quad Polynome\quad mit\quad Koeffinzienten\quad in\quad ℝ\quad wie\quad folgt\quad definiert:\\ { P }_{ 2 }(ℝ):=\left\{ p(x)={ a }_{ 0 }+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }\quad mit\quad { a }_{ 0 },{ a }_{ 1 },{ a }_{ 2 }∈ℝ \right\} \\ Zeigen\quad Sie,\quad dass\quad die\quad Menge:\quad B:=\left\{ 1,x+2,{ (x+2) }^{ 2 } \right\} \quad eine\quad Basis\quad von\quad { P }_{ 2 }(ℝ)\quad ist.$$

Avatar von

Eine offensichtliche Basis von P_(2)(R) ist Bo = {1, x, x^2}

Nun kannst du zeigen, dass diese Basiselemente mit den neuen Basisvektoren ausgedrückt werden können.

Bsp. 1 = 1

x = (x+2) - 2 * 1   , passt

und nun noch eine Lösung (a,b,c) finden für

x^2 = a*1 + b*(x+2) + c* (x+2)^2

1 Antwort

0 Daumen

die Polynome sind  (u.A.) genau dann linear unabhängig, wenn sich das Nullpolynom nur  trivial (r=s=t=0) als Linearkombination  darstellen lässt :

  r * 1 + s* (x+2) + t * (x+2)2 = 0  (Nullpolynom)

....

t · x2  + (s+4t) ·x  + r + 2·s + 4·t = 0

→ t = 0 →  s = 0 →  r = 0   

B ={ 1 , x+2 , (x+2)2 }  ist also linear unabhängig und damit eine Basis von P2(ℝ) , weil dieser Vektorraum die Dimension 3 hat.

Gruß Wolfgang

Avatar von 86 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community