Ich habe deine Idee nicht komplett durchgedacht (ist auch etwas schwer zu lesen), ich hätte bei der offensichtlich bestimmt divergenten Folge allerdings den Ansatz über den entsprechenden Satz gewählt:
$$\text{Eine Folge }(a_n)\text{ ist bestimmt divergent gegen }+\infty \quad[\text{bzw. }-\infty]\text{, wenn zu jedem }\varepsilon>0\text{ ein }n_0\in\mathbb{N}\text{ ex., mit }a_n>\varepsilon \quad[\text{bzw. }a_n<-\varepsilon]\text{ für alle } n>n_0\text{.}$$
Sei ε beliebig aber fest und ε>0.
$$\begin{aligned}\frac{n^2+2n}{3} &>\varepsilon\qquad &&|\cdot 3\\n^2+2n &>3\varepsilon &&|-3\varepsilon\\n^2+2n -3\varepsilon&>0 &&|\text{p-q-Formel, }n> 0\\n&>-1+\sqrt{1+3\varepsilon}\end{aligned}$$
$$\text{Man wähle also } n_0=\lceil{-1+\sqrt{1+3\varepsilon}}\text{ }\rceil+1=\lceil\sqrt{1+3\varepsilon}\text{ }\rceil$$
Zu einem formalen Beweis gehören wahrscheinlich noch ein paar Sätze extra.