x/(1+x)<1 man muss zwei Fälle unterscheiden. Fall 1: 1+x>0. Dann kann man auf beiden Seiten mit 1+x multiplizieren und erhält x<1+x. Das bedeutet nach Subtraktion von x auf beiden Seiten 0<1, was ja stimmt. Also gilt die Ungleichung für den Fall 1+x>0 oder x>-1.
Fall 2: 1+x<0. Wenn man jetzt auf beiden Seiten mit 1+x multiplizieren will, muss man das Ungleichheitszeichen undrehen und erhält x>1+x. Das bedeutet nach Subtraktion von x auf beiden Seiten 0>1, was ja falsch ist. Also gilt die Ungleichung nur für den Fall 1+x>0 oder x>-1.