f(x) = a·COS(b·x)
g(x) = a·(x^2 - 1)
Nullstellen
g(x) = a·(x^2 - 1) = 0 --> x = ±1
f(x) = a·COS(b·x) = 0
b·x = ± ACOS(0) = ± pi/2
x = ± pi/(2·b) = ±1 --> b = pi/2
Stammfunktionen
f(x) = a·COS(pi/2·x)
F(x) = 2·a/pi·SIN(pi·x/2)
g(x) = a·(x^2 - 1)
G(x) = a·(1/3·x^3 - x)
Flächen
∫(-1 bis 1) f(x) dx = F(1) - F(-1) = 2·a/pi - (- 2·a/pi) = 4·a/pi
∫(-1 bis 1) g(x) dx = G(1) - G(-1) = - 2/3·a - (2/3·a) = - 4/3·a
A = 4·a/pi + 4/3·a = a·(4/pi + 4/3) = 12 + 4·pi --> a = 3·pi
Funktionsgleichungen
f(x) = 3·pi·COS(pi/2·x)
g(x) = 3·pi·(x^2 - 1)