0 Daumen
989 Aufrufe


Diese Frage beschäftigt mich schon lange. Ich habe ein allgemeines Dreieck mit 


a = 6,2 cm

b = 4,8 cm

alpha = 74 grad 

Gesucht sind : c, Beta und Gamma 


Ich habe Beta berechnet : 47,9 grad

Und das Buch schon wieder : 48,1 grad 


Ich habe die Höhe hc Gezeichnet und berechnet : 4,6 cm


Meine Abweichung beträgt 0,2 grad. Wäre es ein Fehler oder geht das in Ordnung?

Und noch was : Wie viel Abweichung ist ok ? Beispiel in einer Prüfung ?


Danke !

Avatar von

2 Antworten

+2 Daumen

Hi,

wenn die Aufgabe zeichnerisch gelöst werden soll, so ist eine Abweichung von gerade einmal 0,2° sogar fast als perfekt zu bezeichnen. Selbst 2° sind da noch in Ordnung, solange alles nachvollziehbar ist und zumindest erkennbar ist, dass der Bleistift bei Nutzung gespitzt war :P.

Ist das eine rechnerische Lösung, so sind allenfalls andere Rundungen in Ordnung. Da sollte man schon aufs richtige kommen :P.


Grüße

Avatar von 141 k 🚀

Danke ! Sie sollte rechnerisch mit trigonometrische Funktionen gelöst werden. Was ich nicht verstehe ich habe die Ergebnisse gerundet und Kamm trotzdem nicht aus das exakte Ergebnis. Wie machen die Leute vom Buch das ? Gerundet von mir : 2 Stelle nach dem Komma. 

Zwischenergebnisse werden nie gerundet. Nur das Endergebnis. Das Buch hat also wohl bis zum Ende exakt gerechnet.

Bei euch mag der Lehrer das allerdings durchgehen lassen, dass auch Zwischenergebnisse gerundet werden. 0,2° sind da noch gut in Ordnung. Insbesondere da ja der Rechenweg das wichtige ist und wohl richtig ist ;).

0 Daumen

a = 6,2 cm

b = 4,8 cm

alpha = 74 grad

Sinussatz

a / sin ( alpha ) = b / sin ( beta ) = c / sin ( gamma )

6.2 / sin ( 74 ) = 4.8 / sin ( beta )
sin ( beta ) = 0.7442

beta = 48.09 °

Ich habe Beta berechnet : 47,9 grad
Und das Buch schon wieder : 48,1 grad

Das Buch har also recht
Weiter gehts mit 180 - 74 - 48.09 = gamma
gamma = 57.91 °

Und dann den letzten Teil des Sinussatzes
verwenden.

mfg Georg

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community