und wenn man richtig rechnet, ergibt sich:
Subst:
$$ t = \tan(x) \iff x = \arctan(t) \iff {{\rm d} \arctan(t) \over {\rm d}t} = {1 \over t^2+1} $$
$$ \int {2\cos x+\sin x \over \cos^3 x-\cos x} dx $$
$$ = \int {2+\tan x \over -\sin^2x} dx $$
$$ = \int {2+t \over -\sin^2(\arctan t)} \cdot {1\over t^2+1} dt $$
$$ = \int {2+t \over -{t^2 \over t^2+1}} \cdot {1 \over t^2+1} dt $$
$$ = \int {2+t \over -t^2} dt $$
$$ = \int -{2 \over t^2}-{1\over t} dt $$
$$ = {2 \over t}-\ln|t| $$
$$ = {2 \over \tan x}-\ln|\tan x| $$
---------------
Ansonsten funktioniert auch:
$$ \int {2\cos x+\sin x \over \cos^3 x-\cos x} dx $$
$$ = \int {2\cos x \over \cos^3 x-\cos x} + {\sin x \over \cos^3 x-\cos x} dx $$
$$ = \int {2 \over \cos^2 x-1} + {\sin x \over \cos x \left(\cos^2 x-1\right)} dx $$
$$ = \int {-2 \over \sin^2 x} + {-1 \over \cos x \sin x} dx $$
$$ = {2\over \tan x} + \ln|\tan{x}| $$
Grüße,
M.B.