Polstellen & Definitionslücken
(2·x - 1)^2 = 0 --> x = 0.5 --> Polstelle bei x = 0.5
Funktion & Ableitungen
f(x) = (x - 4) / (2·x - 1)^2
f'(x) = (15 - 2·x) / (2·x - 1)^3
f''(x) = 8·(x - 11) / (2·x - 1)^4
Verhalten an den Grenzen des Definitionsbereiches
lim (x --> -∞) f(x) = 0
lim (x --> 0.5-) f(x) = -∞
lim (x --> 0.5+) f(x) = -∞
lim (x --> ∞) f(x) = 0
y-Achsenabschnitt f(0)
f(0) = -4
Nullstellen f(x) = 0
x - 4 = 0 --> x = 4
Extrempunkte f'(x) = 0
15 - 2·x = 0 --> x = 7.5
f(7.5) = 1/56 = 0.01786 --> HP(7. 5 | 0.01786)
Wendepunkte f''(x) = 0
x - 11 = 0 --> x = 11
f(11) = 1/63 = 0.01587 --> WP(11 | 0.01587)