$$ y+ \frac 12 y' = e^{-2x} $$
$$ y_H+ \frac 12 \frac {dy_H}{dx} =0 $$
$$ y_H=- \frac 12 \frac {dy_H}{dx} $$
$$ 1=- \frac 1{2y_H} \frac {dy_H}{dx} $$
Hier Leben leichter machen:
$$ -2= \frac 1{y_H} \frac {dy_H}{dx} $$
$$ -\int \, 2 \, dx= \int \, \frac 1{y_H} \,dy_H $$
$$ - \, 2 \, x+C= \ln \, (y_H) $$
$$D \cdot e^{(- \, 2 \, x)}= \, y_H $$
---
$$y' = D' \cdot e^{(- \, 2 \, x)}-2 D \cdot e^{(- \, 2 \, x)} $$
$$ y+ \frac 12 y' = e^{-2x} $$
$$ D \cdot e^{(- \, 2 \, x)}+ \frac 12 ( D' \cdot e^{(- \, 2 \, x)}-2 D \cdot e^{(- \, 2 \, x)}) = e^{-2x} $$
$$ \frac 12 \, D' \cdot e^{(- \, 2 \, x)} = e^{-2x} $$
$$ \frac 12 \, D' = \frac{e^{-2x}}{ e^{(- \, 2 \, x)}} $$
$$ \frac 12 \, D' = 1 $$
$$ D' = 2 $$
$$ \int \, D' dx = \int 2 dx$$
$$ D = 2 x$$