Durch lösen (in \( \mathbb{Z} / 5) \) des linearen Gleichungssystem
$$ \begin{array}{l} {\overline{1}=\overline{2} a+\overline{3} b} \\ {\overline{1}=\overline{4} b} \end{array} $$
erhalten wir \( b=\overline{4}, a=\overline{2} \)
Ich stehe gerade etwas an beim lösen dieser einfachen Gleichung mit Restklassen in (Z modulo 5).
Was mir nicht ganz klar ist bei der 2. Gleichung:
b wäre ja 1/4 (in modulo 5). Wie ist aber 1/4 = 4 (in modulo 5)?
Wäre froh wenn mir jemand den Rechenweg erklären könnte!