noch eine Variante der Problembewältigung:
$$ \,\frac1{x^2+3x+1} \, = \frac A{x-(-\frac 32 + \frac {\sqrt{5}}2)}+\frac B{x-(-\frac 32 - \frac {\sqrt{5}}2)}$$
$$ \,\frac1{x^2+3x+1} \, = \frac A{x-(-\frac 32 + \frac {\sqrt{5}}2)}+\frac B{x-(-\frac 32 - \frac {\sqrt{5}}2)} \, \vert\,\left( x-(-\frac 32 + \frac {\sqrt{5}}2) \right)\cdot \left( x-(-\frac 32 - \frac {\sqrt{5}}2) \right)$$
$$ \,\frac{\left( x-(-\frac 32 + \frac {\sqrt{5}}2) \right)\cdot \left( x-(-\frac 32 - \frac {\sqrt{5}}2) \right)}{x^2+3x+1} \, = \frac {A \left( x-(-\frac 32 + \frac {\sqrt{5}}2) \right)\cdot \left( x-(-\frac 32 - \frac {\sqrt{5}}2) \right)}{x-(-\frac 32 + \frac {\sqrt{5}}2)}+\frac {B \cdot \left( x-(-\frac 32 + \frac {\sqrt{5}}2) \right)\cdot \left( x-(-\frac 32 - \frac {\sqrt{5}}2) \right)}{x-(-\frac 32 - \frac {\sqrt{5}}2)} \, \vert\,$$
$$ \,1 \, = A \cdot \left( x-(-\frac 32 - \frac {\sqrt{5}}2) \right)+B \cdot \left( x-(-\frac 32 + \frac {\sqrt{5}}2) \right)$$
$$0 \cdot x \,+1 \, = Ax+Bx+A \cdot \left( -(-\frac 32 - \frac {\sqrt{5}}2) \right)+B \cdot \left( -(-\frac 32 + \frac {\sqrt{5}}2) \right)$$
$$0=A+B\quad \vert \quad B=-A$$
$$ \,+1 \, = A \cdot \left( -(-\frac 32 - \frac {\sqrt{5}}2) \right)-A \cdot \left( -(-\frac 32 + \frac {\sqrt{5}}2) \right)$$
$$ \,+1 \, = A \cdot \left( -( - \frac {\sqrt{5}}2) \right)-A \cdot \left( -( + \frac {\sqrt{5}}2) \right)$$
$$ \,+1 \, = A \cdot \left( \frac {\sqrt{5}}2 \right)+A \cdot \left( \frac {\sqrt{5}}2 \right)$$
$$ \,+1 \, = A \cdot \sqrt{5}$$
$$ A = \frac 1 {\sqrt{5}}$$
$$ B = -\frac 1 {\sqrt{5}}$$
---
$$ \,\frac1{x^2+3x+1} \, = \frac {\frac 1 {\sqrt{5}}}{x-(-\frac 32 + \frac {\sqrt{5}}2)}-\frac {\frac 1 {\sqrt{5}}}{x-(-\frac 32 - \frac {\sqrt{5}}2)}$$