f(x) = |a^x - 1|
f1(x) = a^x - 1 für x >= 0
F1(x) = a^x/LN(a) - 1/LN(a) - x
f2(x) = 1 - a^x für x <= 0
F2(x) = - a^x/LN(a) + 1/LN(a) + x
F1(1) - F1(0) = (a - 1)/LN(a) - 1 - 0 = (a - 1)/LN(a) - 1
F2(0) - F2(-1) = 0 - (- a^{-1}/LN(a) + 1/LN(a) - 1) = (1 - a)/(a·LN(a)) + 1
Damit ist das Integral
(a - 1)/LN(a) - 1 + (1 - a)/(a·LN(a)) + 1
= (a^2 - 2·a + 1)/(a·LN(a))
= a/LN(a) + 1/(a·LN(a)) - 2/LN(a)