Es ist die Funktion y=x6-1 gegeben. Der Definitionsbereich der Funktion sind alle x der reellen Zahlen (für x kann man ja jede beliebige Zahl einsetzen, ohne dass etwas "Unlösbares" rauskommt), doch der Wertebereich fängt erst ab -1 an, der kleinstmögliche y-Wert ist also -1.
Die Aufgabe ist nun, anzugeben, in welchem Definitionsbereich die Funktion injektiv ist. Injektiv heißt ja, dass jedem y-Wert höchstens ein x-Wert zugeordnet ist.
Kann man sagen, dass die Funktion für alle x>=0 (größer gleich) injektiv ist? Oder könnte man auch sagen, dass die Funktion für alle x<=0 (kleiner gleich) injektiv ist? Wenn man den gesamten Definitionsbereich betrachtet, kann die Funktion jedenfalls nicht injektiv sein, da bspw. für x=2 und x=-2 jeweils der gleiche y-Wert (63) rauskommt. Doch wenn man nur die positiven oder nur die negativen Zahlen betrachtet, dann wäre dieser Teil des Definitionsbereiches doch injektiv (im positiven und negativen Bereich ist jeweils jedem x-Wert ein y-Wert zugeordnet), oder nicht?
:)