Sei n ∈N.
a) Für x1 , x2 , ... , xn ≥ 0 ist
(1+x1)*(1+x2)*...*(1+xn) ≥ 1 + x1 + x2 + ... + xn
Sei also n∈ℕ und es gelte
(1+x1)*(1+x2)*...*(1+xn) ≥ 1 + x1 + x2 + ... + xn
für x1 , x2 , ... , xn ≥ 0 .
Seien nun Für x1 , x2 , ... , xn, xn+1 ≥ 0
Dann ist (1+x1)*(1+x2)*...*(1+xn)*(1+xn+1)
≥ (1 + x1 + x2 + ... + xn)*(1+xn+1)
= (1 + x1 + x2 + ... + xn) +(1 + x1 + x2 + ... + xn)*xn+1
= (1 + x1 + x2 + ... + xn) +(xn+1 + xn+1*x1 + *xn+1x2 + ... + xn+1*xn)
= (1 + x1 + x2 + ... + xn +xn+1 )+( xn+1*x1 + *xn+1x2 + ... + xn+1*xn)
≥ 1 + x1 + x2 + ... + xn +xn+1 , weil die 2. Klammer positiv ist.