Allgemeine Lösung
V = pi·r^2·h --> h = V/(pi·r^2)
A(r, h) = 8·r^2 + 2·pi·r·h
A(r) = 8·r^2 + 2·pi·r·(V/(pi·r^2))
A(r) = 8·r^2 + 2·V/r
A'(r) = 16·r - 2·V/r^2 = 0 --> r = 1/2·V^{1/3}
h = V/(pi·r^2) = V/(pi·(1/2·V^{1/3})^2) = 4/pi·V^{1/3}
Einsetzen und ausrechnen
r = 1/2·(1000)^{1/3} = 5 cm
h = 4/pi·(1000)^{1/3} = 12.73 cm