a)
K(x) = a·x^2 + b·x + c
K'(x) = 2·a·x + b
K(200) = 1100 --> 40000·a + 200·b + c = 1100
K'(200) = 2.5 --> 400·a + b = 2.5
K(0) = 800 --> c = 800
Löse das Gleichungssystem und erhalte: a = 0.005 ∧ b = 0.5 ∧ c = 800
K(x) = 0.005·x^2 + 0.5·x + 800
Betriebsoptimum
k(x) = 0.005·x + 0.5 + 800/x
k'(x) = 0.005 - 800/x^2 = 0 --> x = 400 Stück
b)
E(x) = 6.3·x
G(x) = E(x) - K(x) = (6.3·x) - (0.005·x^2 + 0.5·x + 800) = - 0.005·x^2 + 5.8·x - 800
G(x) = - 0.005·x^2 + 5.8·x - 800 = 0 --> x = 160 Stück ∨ x = 1000 Stück
G'(x) = - 0.01·x + 5.8 = 0 --> x = 580 Stück
G(580) = - 0.005·580^2 + 5.8·580 - 800 = 882 GE
c)
E(x) = 7.7·x - 0.0014·x^2
p(x) = E(x)/x = 7.7 - 0.0014·x
G(x) = E(x) - K(x) = (7.7·x - 0.0014·x^2) - (0.005·x^2 + 0.5·x + 800) = - 0.0064·x^2 + 7.2·x - 800
G(x) = - 0.0064·x^2 + 7.2·x - 800 = 0 --> x = 125 Stück ∨ x = 1000 Stück
G'(x) = - 0.0128·x + 7.2 = 0 --> x = 562.5 Stück
G(562.5) = - 0.0064·562.5^2 + 7.2·562.5 - 800 = 1225 GE