\(2x^2+(4s-r)x = 2rs |:2\)
\(x^2+\frac{4s-r}{2}x =rs \) quadratische Ergänzung
\(x^2+\frac{4s-r}{2}x+(\frac{4s-r}{4})^2=rs +(\frac{4s-r}{4})^2\) 1. Binom
\(x^2+\frac{4s-r}{2}x+(\frac{4s-r}{4})^2=rs +(\frac{16s^2-8rs+r^2}{16})\)
\(x^2+\frac{4s-r}{2}x+(\frac{4s-r}{4})^2=\frac{(r+4s)^2}{16}\)
\((x+\frac{4s-r}{4})^2=\frac{(r+4s)^2}{16} |±\sqrt{~~}\)
1.)
\(x+\frac{4s-r}{4}=\frac{r+4s}{4} \)
\(x_1=-\frac{4s-r}{4}+\frac{r+4s}{4}=\frac{1}{2}r \)
2.)
\(x+\frac{4s-r}{4}=-\frac{r+4s}{4} \)
\(x_2=-\frac{4s-r}{4}-\frac{r+4s}{4}=-2s\)