Hi,
zunächst mal zum maximalen Definitionsbereich.
Der Ausdruck unter der Wurzel wird negativ für \(x \in (\frac{1}{2},2)\) und existiert nicht für \(x=\frac{1}{2}\).
D.h. die Funktion \(f\) ist schon mal nur auf \(D=(-\infty, \frac{1}{2}) \cup [2, \infty)\) definiert.
Um die Umkehrfunktion zu bestimmen, löse \(y=\sqrt{\frac{x-2}{2x-1}}\) nach \(x\) auf. Achte auf deinen Definitionsbereich den du hier für die Umkehrfunktion \(f^{-1}\) wählst!