Falls es so gemeint ist:
sin(x)=cos(x) +√2 |(..)^2
sin^2(x) = (cos(x) +√2)^2
sin^2(x) = cos^2(x) +2√2 cos(x) +2
----------< sin^2(x) +cos^2(x)=1
sin^2(x) =1 -cos^2(x)
----------->
1 -cos^2(x)= cos^2(x) +2√2 cos(x) +2 | -1 +cos^2(x)
0= 2 cos^2(x) +2√2 cos(x) +1
z= cos(x)
------>
0= 2 z^2 +2√2 z+1 |:2
0= z^2 +√2 z+1/2 ->PQ- Formel
z1,2= - √2/2
Resubstitution:
cos(x)= - √2/2
x1= 2kπ + (3π)/4 , k∈ Z
x2= 2kπ + (5π)/4 , k∈ Z