Ich muss den folgenden Term vereinfachen:
\( \frac{4-2 \sqrt{10}}{\sqrt{2}-\sqrt{3}-\sqrt{5}} \)
Meine Lösung:
\( \frac{4-2 \sqrt{2 \times 5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}} \)
\( = \frac{4-2 \times \sqrt{2} \times \sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}} \)
\( = \frac{2 \times \sqrt{2} \times \sqrt{2}-2 \times \sqrt{2} \times \sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}} \)
\( = \frac{2 \sqrt{2} \times(\sqrt{2}-\sqrt{5})}{\sqrt{2}-\sqrt{2 \times 1,5}-\sqrt{2 \times 2,5}} \)
\( = \frac{2 \sqrt{2} \times(\sqrt{2}-\sqrt{5})}{\sqrt{2}-\sqrt{2} \times \sqrt{1,5}-\sqrt{2} \times \sqrt{2,5}} \)
\( = \frac{2 \times(\sqrt{2}-\sqrt{5})}{\sqrt{1,5}-\sqrt{2,5}} \)