Hey
das Skalarprodukt ist eine Multiplikation zweier Skalare. In deinem Fall also:
$$ \overrightarrow { x } =\left( \begin{matrix} 1 & 2 & 3 \end{matrix} \right) ,\overrightarrow { y } =\left( \begin{matrix} 1 & 2 & 4 \end{matrix} \right) ,\quad \overrightarrow { x } \cdot \overrightarrow { y } =1\cdot1+2\cdot2+3\cdot4 = 17$$
Wenn da steht x' heißt dies oft (könnte sein!) transponiert! D.h. Aus Zeilen werden Spalten:
$$ \overrightarrow { x' } =\left( \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right) ,\overrightarrow { y } =\left( \begin{matrix} 1 & 2 & 4 \end{matrix} \right) ,\quad \overrightarrow { x' } \cdot \overrightarrow { y } =\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 3 & 6 & 12 \end{pmatrix} $$ Das Ergebnis ist dann eine Matrix!
Ich denke aber, dass deine Rechnung schon so richtig war! D.h. Siehe meine erste Rechnung!