Man hat $$ f(x)=\Bigg(\frac{1}{\sin\Big(\frac{5x}{4} \Big)} \Bigg)^\frac{1}{1-\cos(3x)}\quad |\ln(.)\\\ln(f(x))=\frac{1}{1-\cos(3x)}\cdot \ln\Bigg(\frac{1}{\sin\Big(\frac{5x}{4} \Big)} \Bigg)=\frac{1}{\cos(3x)-1}\cdot \ln\Bigg(\sin\Big(\frac{5x}{4} \Big)\Bigg)=\frac{\ln\Bigg(\sin\Big(\frac{5x}{4} \Big)\Bigg)}{\cos(3x)-1}$$
Dann ist
$$ \lim_{x \to 2\pi} \ln(f(x))=\lim_{x \to 2\pi} \frac{\ln\Bigg(\sin\Big(\frac{5x}{4} \Big)\Bigg)}{\cos(3x)-1}\stackrel{L'H}{=}\lim_{x \to 2\pi}\frac{\frac{5}{4}\cdot \frac{\cos\Big(\frac{5x}{4} \Big)}{\sin\Big(\frac{5x}{4} \Big)}}{-3\cdot \sin(3x)}\\=-\frac{5}{12}\cdot \lim_{x \to 2\pi}\frac{\cos\Big(\frac{5x}{4} \Big)}{\sin(3x)\cdot \sin\Big(\frac{5x}{4} \Big)}\\ \stackrel{L'H}{=}-\frac{5}{12}\cdot \lim_{x \to 2\pi}\frac{-\frac{5}{4}\cdot \sin\Big(\frac{5x}{4} \Big)}{3\cdot \cos(3x)\cdot \sin\Big(\frac{5x}{4} \Big)+\sin(3x)\cdot\frac{5}{4}\cdot \cos\Big(\frac{5x}{4} \Big)}\\=-\frac{5}{12}\cdot \lim_{x \to 2\pi}\frac{-\frac{5}{4}\cdot 1}{3\cdot 1\cdot 1+0\cdot\frac{5}{4}\cdot 0}=\frac{25}{144} $$
Dann ist also
$$ \lim_{x \to 2\pi} e^{\ln(f(x))}=e^{\frac{25}{144}} $$