dieser Ausdruck lässt sich nicht analytisch integrieren, bzw. es kann dafür keine Stammfunktion gefunden werden. Du kannst also bei diesem Ausdruck nur näherungsweise bestimmte Integrale berechnen, zB mit Streifenmethode, Simpsonregel, Trapezregel, Taylorapproximation. Weil der Exponent kleiner als 1 ist, kannst deinen Ausdruck auch mithilfe der Binomischen Reihe ausdrücken, was wieder eine normal Potenzreihe ergibt, die sich integrieren lässt.
$$ (1+x)^\alpha=\sum_{k=0}^\infty \begin{pmatrix}\alpha\\k \end{pmatrix}\cdot x^k $$
Also $$ \Big(1+(x^2+2x-1)\Big)^\frac{1}{3}=\sum_{k=0}^\infty \begin{pmatrix}\frac{1}{3}\\k \end{pmatrix}\cdot (x^2+2x-1)^k $$.
EDIT: Diese Reihe konvergiert aber nur dann gegen deine Funktion, solange $$ |x^2+2x-1|<1 $$ erfüllt ist.