Du würfelst mit einem Dodekaeder(12 Seiten). Wie groß ist die Wahrscheinlichkeit, dass du
a) Bei 4 Würfen jedes Mal mindestens die Augenzahl 10 erzielst?
Die Ergebnisse 1 bis 12 sind dann ja alle gleichwahrscheinlich, also hat jedes
die Wahrscheinlichkeit 1/12.
Mindestens 10 gibt es bei 10,11,12 also ist bei einem Wurf
p( x≥10) = 3/12 = 1/4
Bei 4 Würfen jedes Mal also p=(1/4)^4 = 1/256
b) Bei 4 Würfen genau zwei Zwölfen erzielst?
p(12) = 1/12 p( nicht 12) = 11/12
Bei 4 Würfen genau 2 Zwölfen kann so aussehen
12 12 nicht12 nicht12
nicht12 12 12 nicht12
12 nicht12 nicht12 12 etc.
Jedes hat die Wahrscheinlichkeit (1/12)^2 * (11/12)^2 .
Es gibt (4 über 2) = 6 verschiedene Reihenfolgen also ist das Ergebnis
p = 6* (1/12)^2 * (11/12)^2 = 3,5% (siehe auch Bernoullikette)