EDIT: Und falls du (*) nicht kennst, bzw. nicht benutzen darfst geht es auch so hier:
$$ (n-5):(n+1)=1+\frac{-6}{n+1} $$ Dann hat man:
$$ \lim_{n \to \infty} \Bigg(\frac{n-5}{n+1}\Bigg)^{2n}=\lim_{n \to \infty} \Bigg(1+\frac{-6}{n+1}\Bigg)^{2n}=\lim_{n \to \infty} \Bigg(1+\frac{1}{\frac{n+1}{-6}}\Bigg)^{2n}\\ \text{Setze } z:=\frac{n+1}{-6} \Leftrightarrow n=-6z-1 (**) $$Dann ist
$$ \stackrel{(**)}{=}\lim_{z \to \infty}\Bigg(1+\frac{1}{z} \Bigg)^{2(-6z-1)}=\lim_{z \to \infty}\Bigg(1+\frac{1}{z} \Bigg)^{-12z-2}\\=\lim_{z \to \infty}\Bigg(1+\frac{1}{z} \Bigg)^{-12z}\cdot \Bigg(1+\frac{1}{z} \Bigg)^{-2}\\=\lim_{z \to \infty}\Bigg(\Bigg(1+\frac{1}{z} \Bigg)^{z}\Bigg)^{-12}\cdot \Bigg(1+\frac{1}{z} \Bigg)^{-2}\stackrel{Ansatz}{=}(e)^{-12}\cdot 1=e^{-12}. $$