Aufstellen der allgemeinen Matrix
\(Ao \, := \, \left(\begin{array}{rrr}a11&a12&a13\\a21&a22&a23\\\end{array}\right)\)
\(bo \, := \, \left(\begin{array}{r}b1\\b2\\\end{array}\right)\)
\(f(x) \, := \, Ao \; x + bo\)
Die Abbildung durchführen
\( {f(p0)-p0',f(p1)-p1',f(p2)-p2',f(p3)-p3'} \)
\( \left\{ \binom{a12 + b1 - 1}{a22 + b2 - 1}, \binom{2 \; a12 + a13 + b1 + 1}{2 \; a22 + a23 + b2 - 2}, \binom{a11 + 3 \; a12 + a13 + b1 - 1}{a21 + 3 \; a22 + a23 + b2 + 1}, \binom{-4 \; a11 + 2 \; a13 + b1 + 1}{-4 \; a21 + 2 \; a23 + b2 + 1} \right\} \)
GLS lösen
\( \left\{ \left\{ a11 = -8, a12 = 10, a13 = -12, a21 = 13, a22 = -16, a23 = 17, b1 = -9, b2 = 17 \right\} \right\} \)