1/ln(x) + 1/2 =1/2*ln(x) | *ln(x)
1+ (1/2)ln(x) = (1/2) ln^2(x)
z= ln(x)
1 +(1/2) z = (1/2) z^2 |*2
2+z = z^2
z^2 -z -2= 0 ->pq-Formel
z1.2= 1/2 ± √(1/4 +2)
z1.2= 1/2 ± 3/2
z1= 2
z2= -1
Rücksubstituieren:
z= ln(x)
z1=ln(x) -------->x1 = e^2
z2= -1= → x2 =1/e